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Abstract.  This study deals with the problem of identifying atmospheric data that are influenced by local emissions

which cause spikes in time series of greenhouse gases and long-lived tracer measurements . We considered three spike

detection methods known as coefficient of variation (COV), robust extraction of baseline signal (REBS), and standard

deviation of the background (SD), to detect and filter positive spikes in continuous greenhouse gas time series from four

monitoring  stations  representative  of  the  ICOS  (Integrated  Carbon  Observation  System) European  Infrastructure

network. The results of the different methods are compared to each other and against a manual detection performed by

station managers. Four stations were selected as test cases to apply the spike detection methods: a continental rural

tower of 100 m height in Eastern France (OPE); a high mountain observatory in the south-west of France (PDM); a

regional marine background site in Crete (FKL); and a marine clean-air background site in the southern hemisphere in

Amsterdam island (AMS). This panel  allows to address the spike detection problems in time series  with different

variability. Two years of continuous measurements of CO2, CH4 and CO were analyzed. All the methods were found to

be able to detect short-term spikes (lasting from a few seconds to few minutes) in the time series. Analysis of the results

of each method leads us to exclude the use of the COV method because of its requirement to arbitrarily specify an a

priori percentage of rejected data in the time series, which may over- or under-estimate the actual number of spikes. The

two other  methods freely determine  the  number  of  spikes  for  a  given set  of  parameters,  and  the  values  of  these

parameters  were  calibrated  to  provide  a  best  match  with  spikes  known  to  reflect  local  emissions  episodes  well

documented by the station managers. More than 96% of the spikes manually identified by station managers  were

successfully detected both in the SD and the REBS methods after the best adjustment of parameter values. At PDM,

measurements made by two analyzers 200 m from each other allow to confirm that the CH 4 spikes identified in one of

the  time-series  but  not  in  the  other  correspond to  a  local  source  from a  sewage treatment  facility  in  one  of  the
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observatory buildings. From this experiment, we found that the REBS method underestimates the number of positive

anomalies in the CH4 data caused by local sewage emissions. As a conclusion, we recommend the use of the SD

method, which also appears as the easiest one to implement as automatic data processing, for the operational filtering of

spikes in greenhouses gases time series at global and regional monitoring stations of networks like ICOS.

1 Introduction

Continuous measurements of long-lived greenhouse gases (GHG) such as CO2 and CH4 at ground based monitoring

stations are commonly used in atmospheric inversions for the estimation of surface fluxes. The variability of GHG

continuous  time  series  reflects  atmospheric  transport  processes  and  surface  fluxes.  One  difficulty  to  match  these

measurements with atmospheric transport model simulations is that they exhibit variability at a wide range of time

scales, which is imperfectly captured by transport models, due to their limited spatial resolution and to uncertain surface

emission  inventories.  In  particular,  local  emissions  in  the  vicinity  of  stations  can  have  a  major  influence  on

concentrations,  generating  brief  but  intense  positive  perturbations,  thereafter  referred  to  as  “spikes”.  Every

measurement  has  a  specific  spatial  representativeness,  and  knowledge  of  this  information,  allows  a  much  finer

interpretation of the observation. It is desirable to separate in continuous GHG time series the data strongly influenced

by local emissions (fluxes within less than few kilometers) and those influenced by regional (few tens of kilometers)

and large scale (hundreds or thousands of kilometers) fluxes and transport. The influence of local fluxes, in particular of

nearby point sources of emissions should be filtered out prior to the use of the time series in inversion models if the

models do not have the ability to represent it. For instance, a road near a station can emit CO 2 causing spikes in the time

series, while this road is not accounted for in the emission inventory used in an inversion.

Having empirical information on the representativeness of continuous GHG time series, e.g logbook available for each

station, allows for more precise interpretation of the atmospheric measurements, in terms of processes involved in the

observed variability. It is interesting for example to assign the contribution of specific sources (e.g. point sources of

fossil  CO2 emissions,  biomass burning events) within the local  vicinity of  the station. Several  methods have been

proposed to account for local to regional influences in greenhouse gas observations according to other observables, such

as wind speed and direction (Perez et al., 2012), and tracers like Radon-222 or black carbon (Biraud et al., 2002; Fang

et al., 2015;  Williams et al., 2016). Air-mass trajectory information are also frequently used (Ramonet and Monfray,

1996; Ferrarese et al., 2003; Maione et al., 2008; Fleming et al., 2011; Perez et al., 2012; Gerbig et al., 2006). Other

methods based on a statistical  treatment  of  time series  (Giostra et  al.,  2011;  Ruckstuhl et  al.,  2012) are easier  to

generalize  because  they require  no  additional  observable.  A  commonly used  strategy  by  modelers  using transport

models of a typical resolution from 10 to 50 km, consists in systematically removing some periods of the day (e.g. night

time for surface stations, or day time for mountain sites) in order to filter the influence of non-resolved mesoscale

circulations, or vertical transport processes poorly represented by models (e.g. sporadic turbulence in stable or neutral

night-time boundary layers).

In this study, our objective is to compare methods that could be used operationally to remove the contaminations from

local  sources at continuous measurement stations.  Local contamination may be due e.g.  to fossil-fuel  based power

generation at the station facility, local traffic, etc. The short term variations (few seconds to minutes) of greenhouse

gases associated to those of local sources have been rarely analyzed, and they have been most of the time averaged with

consecutive data.  Some studies, though, have been focusing on local emissions on the basis of the detection of  short

term “spikes” (Monster et al., 2015). “Local” refers here to emissions at less than few kilometers around the station

2

40

45

50

55

60

65

70

75

Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2017-247
Manuscript under review for journal Atmos. Meas. Tech.
Discussion started: 21 September 2017
c© Author(s) 2017. CC BY 4.0 License.



causing positive short-term spikes of a few seconds to few minutes superimposed on the signal resulting from boundary

layer mixing, synoptic transport and regional fluxes. We compare here spike detection algorithms for local sources in

greenhouse gases (CO2 and CH4) and long lived tracer time series (CO). The algorithms chosen in this study have been

applied  to  air  pollution  data  (e.g.  ultrafine  particles,  particulate  matter,  and  nitrogen  dioxide  NO2)  having  shorter

lifetimes than CO2, CH4 and CO (Brantley et al., 2014). In the case of greenhouse gases, spikes can be caused by local

sources but also by the fast transport of remote emissions. Compared to short lifetime species, spikes in GHG are not

always larger than the variability associated with synoptic scales. For CO2, uptake by local vegetation may occasionally

lead to negative spikes, which will not be evaluated in this study (only positive spikes are considered).

The three spike-detection algorithms: coefficient of variation (COV); robust extraction of baseline signal (REBS); and

standard  deviation  of  the  background  (SD)  are  described  in  section  2,  then  applied  to  two  years  of  continuous

measurements  of  CO2,  CH4 and  CO at  four  stations  representative  of  the  European  network  of  GHG monitoring

stations. The results are discussed in section 3. Wherever possible, the ability of an algorithm to successfully detect and

remove the effects of local sources and transport  is verified using independent information about the presence and

position of known local emissions.

2 Methodology

We selected four contrasted atmospheric GHG measurement sites operated by LSCE  (Laboratoire des Sciences du

Climat et de l'Environnement),  a tall-tower station in France, a high-mountain station in France, a regional marine

background site in Crete, and a marine clean-air site in the southern hemisphere, that provided continuous data from

2013 to December of 2015 (Table 1). Continuous measurements used in this study are averages with one-minute time

resolution, and are processed in near real time by the ICOS Atmospheric Thematic Center (Hazan et al., 2016). The four

stations are used in regional and global  atmospheric inversions to estimate GHG surface fluxes at a regional and a

global scale (Bergamaschi et al., 2017, Le Quéré et al., 2007, Saunois et al., 2016).

2.1 Measurement sites and methods

2.1.1 Measurement sites

Amsterdam Island  (AMS,  37°48’S;  77°32’E).  This  marine background station is operated since 1980 to  monitor

trends of trace gases in the southern-hemisphere mid-latitude clean-air atmosphere.  The observatory is located on the

coast of a small island (55 km²) covered by short grasslands, in the middle of the Indian ocean 3000 km southeast of

Madagascar. Measurements are performed at the Pointe Bénédicte site located north of the island, on the edge of a 55-m

cliff  above  sea  level.  The  air  is  sampled  at  the  top  of  a  20m high  tower.  The  station  contributes  to  the  Global

Atmospheric Watch program (WMO/GAW). The data used to feed the WMO/GAW database and estimate the long term

trends are filtered according to local wind measurements to avoid the influence of CO 2 emissions from the island itself

(Ramonet and Monfray, 1996).

Finokalia (FKL, 35°20’N; 25°40’E). This coastal station is located on the northern coast of Crete, 350 km south of

mainland Greece. The nearest city is Heraklion with a population of about 150,000 inhabitants, 50 km west of the

station. There is no significant anthropogenic emission within a circle of 15 km around the station (Kouvarakis et al.,

2000). The station is on the top of a 230 m hill above sea level, and the air is sampled at the top of a 15 m mast. The dry
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season from April  to  September is  associated  with strong winds from North and  North-west  (Central  Europe and

Balkans), and the wet season from October to March is associated with air masses from North Africa (South and South-

west winds) in addition to the dominant North-westerly winds. The station is operated by the Environmental Chemical

Processes Laboratory (ECPL) at University of Crete also collects aerosol and reactive gases (Hildebrandt et al., 2010;

Pikridas et al., 2010; Bossioli et al., 2016; Kopanakis et al., 2016).

Pic du Midi (PDM, 42°56’N; 0°08'E). This high mountain site is located at 2877m a.s.l on the north and west side of

the Pyrenees range, in southwest France, 150 km east of the Atlantic Ocean and 200 km west of the Mediterranean Sea.

Due to its high elevation, the station often samples tropospheric air from the Atlantic Ocean, but also air masses from

continental Europe in high-pressure conditions over France (north-easterly winds), or from the Iberian Peninsula under

southerly winds.  Upslope  winds and meso-scale circulations are frequent  especially  in  summer and early autumn,

bringing boundary layer air mostly from southwest France (covered by intensive croplands and forests) (Gheusi et al.

2011; Tsamalis et al. 2014; Fu et al., 2016).

Observatoire Pérenne de l’Environnement (OPE, 48°33’N; 5°30’E). This 120 m tall tower is located in a rural area at

395 m above sea level in the North-East of France (250 km east of Paris). It  is located in a transition zone between

oceanic westerly regimes, and easterly winds advecting air from Eastern Europe. The station continuously measures air

quality and greenhouse gases since September 2011 as part of the European infrastructure ICOS. Every hour, ambient

air is sampled for 20 min alternatively at heights of 10, 50 and 120 m on the tower (Table 1).

2.1.2 Measurement methods

The  gas  analyzers  used  at  the  four  stations  are  Cavity  ring-down spectroscopy instruments  (CRDS)  (Okeefe  and

Deacon, 1988), namely Picarro/G2401 analyzers at FKL, OPE and PDM with CO2, CH4 and CO, and Picarro/G2301 at

AMS with CO2 and CH4 (Table 1). The measurement protocols used at the four stations are similar and based on ICOS

recommendations. A calibration using four reference gases is performed every 3 to 4 weeks. Two more reference gases

are analyzed regularly for quality control purposes. The raw data (0.2 to 0.5 Hz) are transferred once per day to a central

server and near-real time (NRT) datasets are available within 24 hours. The NRT data processing (Hazan et al., 2016)

includes automatic filtering of raw data based on the physical parameters of the analyzers (e.g., cavity temperature and

pressure), and threshold values for rejection of outliers This last filter aims to reject aberrant values from the near-real

time dataset. It may happen that it rejects an extreme but real event, for instance due to an urban pollution plume. In

such case the data will be validated afterwards by the station manager. Indeed, after this automatic processing, the

station managers are invited to validate or invalidate data manually using a specific software developed by the ICOS

Atmospheric Thematic Center. For each data manually flagged as invalid, it is required to provide the reason (e.g.

leakage, maintenance, local traffic). This procedure does not ensure the systematic rejection of spikes in the data from

local / regional processes.

Meteorological  measurements  are  also  performed at  the  four  stations with  barometric  pressure,  temperature,  wind

speed, wind direction and relative humidity. Wind speed and direction are measured using 2D or 3D ultrasonic sensors

installed at the same height of the greenhouse gas measurements. The sensors are adapted to the local weather, for

instance at PDM (2877 m a. s. l) the sensor is heated to avoid icing.
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2.2 Spike detection algorithms

Three algorithms were tested to detect positive short-duration GHG spikes lasting from a few seconds to a few minutes,

using time series of one-minute averaged mole fractions of CO2 (as illustrated in the Supplement, Figure S1), CH4 and

CO.  The  three  methods  presented  in  this  section,  are  commonly  based  on  the  calculations  of  the  local  standard

deviations of measurements. A spike is detected when the difference between a determined background and the current

data value is  above a defined threshold.  We will  present  in  this  section the corresponding threshold for  the three

methods.

CO2, CH4 and CO 1-min data were processed using R version 3.1.3 (R Core Team,2015) together with packages openair

(Carslaw and Ropkins, 2015), IDPmisc (Locher et al., 2012), and ggplot2 (Wickham et al., 2015) using the three spike

detection algorithms.

2.2.1 Coefficient of variation (COV) method

The coefficient of variation (COV) method (Brantley et al., 2014) is a modified version of the method presented by

Hagler  et  al.  (2010).  It  was  developed  to  analyze  data  from  a  mobile  laboratory  measuring  ultrafine  particles

concentrations near a road transect (Brantley et al., 2014) for peak detection of carbon monoxide which was used as an

indicator of the passage of vehicles. In our application we calculate the COV coefficients for CO2, CH4 and CO time

series following the next two steps. First, the standard deviation of a moving five minutes’ time window (with one

window for each 1-minute data) is calculated (two minutes before and after each 1-minute data point). Second, the

standard deviation of each time window is divided by the mean value of the complete time series. The 99 th percentile of

the COV coefficients is used as a threshold above which a 1-min data is considered to be part of a spike. We also

identified as contaminated data all data recorded 2 minutes before and after each contaminated data. The COV method

is sensitive to the choice of threshold percentile. In the Supplement we illustrate in Figure S2-A an examples of a spike

detection  using  the  COV method during  a  CO contamination  episode  known to  be  affected  by  a  local  fire.  One

important feature of the COV algorithm, compared to the other methods, is the a-priori definition of the percentage of

data to be filtered (threshold percentile), meaning that the number of spike data is not automatically detected.

2.2.2 Standard deviation of the background (SD)

The SD method (Drewnick et al., 2012) considers that a time series is a combination of a smooth signal superimposed

with a fast variable signal. The variable signal component in our case is related to local emissions causing spikes. To

determine the variability of  background concentration levels we calculated the standard deviation (σ)  of only data

falling between the first and the third quartile of all data set. A sensitivity test with various quantile ranges is presented

in section 3.1. We then select the first available data, called Cunf (un-flagged data, example in the Supplement Figure S2-

B) assuming that it is not in a spike. The next data in the time series C i are evaluated with respect to Cunf, spikes being

defined by data values higher than a threshold defined as Cunf plus an additive value α∗σ+√n∗σ : (e.g. the red

data point in the Supplement Figure S2-B), where α is a parameter to control the selection threshold, and n is the

number of points between Cunf and Ci . The value of α depends on the time-series variability. A sensitivity analysis to the

influence of α is presented in section 3.1. We set a default value of α=1 for CO2 and CH4, and α=3 for CO (Drewnick et

al., 2012). The lower value for CO2, and CH4 is justified in section 3.1. The integer n brings a temporal information
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about the evolution of the time-series. Indeed, while identifying a spike Ci, the next data is evaluated against Cunf using

an increased threshold to take in consideration the variability of the baseline during the spike event.  If Ci is lower than

the threshold from equation (1), it is considered as non-spike, and becomes the new reference value Cunf. The following

data will then be compared to this updated Cunf.

Ci ≥ Cunf +α∗σ+√n∗σ    (1)

The SD method was applied over one-week time windows, i.e. the standard deviation σ over a week is used for

threshold calculation. Using a longer period (e.g. one year) would give more weight on the seasonal and long-term

variabilities which are not relevant to identify short term spikes using the one-year standard deviation.

2.2.3 Robust extraction of baseline signal (REBS)

The REBS method (Ruckstuhl et al. 2012) is a statistical method based on the calculation of a local linear regression of

the time-series over a moving time-window (characterized by a duration called the “bandwidth”), to account for the

slow variability of the baseline signal, while outliers lying too far from the modelled baseline are iteratively discarded.

The bandwidth h must be wide enough to allow for a sufficiently low fraction of outliers within h. The REBS code used

here is based on the rfbaseline application developed in the IDPmisc package (Locher, et al., 2012) in R software. It is a

modified version of the robust baseline estimation method developed to delete baseline from chemical analytical spectra

(Ruckstuhl et al., 2001). The REBS method was applied at the high-alpine Jungfraujoch site (Switzerland, 3580 m a.s.l.)

and proved robustness to estimate the background measurements of greenhouse gases (Ruckstuhl et al. 2012).  The

REBS method considers  that  greenhouse  gases  time-series  are  composed  of  a  background signal,  plus  a  regional

contribution which may also include local effects (spikes) and measurement errors. The main difficulty is to correctly

define the baseline signal  of the measured time-series.  To achieve this goal,  the choice of the bandwidth value is

important.  In  the  Jungfraujoch  study,  the  baseline  signal  was  defined  as  the  smooth  curve  retrieved  from REBS

technique (Ruckstuhl et al. 2012) using a bandwidth of 90 days, in order to distinguish the contribution of regional

emissions that add to the slow seasonal variability. Since, in our study, the targeted spikes last few seconds to few

minutes, we chose to calculate the baseline using a bandwidth of 60 min to detect spikes of a few minutes (maximum 5

minutes).  The threshold for  spike  detection  in  REBS is  based  on  the  calculation  of  a  scale  parameter β which

represents the standard deviation of data below the baseline curve, called ĝ(t i) . All measurements Y (t i) that

satisfy Y (ti )> ĝ (t i )+β∗γ are classified as locally contaminated (illustration in the Supplement Figure S2-C). β

is a parameter to adjust the filtering strength. Ruckstuhl et al. (2012) set β =3 for the detection of polluted data. For

our purpose, a sensitivity test with different values of β is carried out (section 3.1).
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3 Results

3.1 Optimization of the SD and REBS methods

3.1.1 Sensitivity to the parameters of the SD method

We conducted sensitivity tests in order to evaluate the influence of the two parameters α and σ used in the SD method.

For α we tested values ranging from 1 to 3. Here, we present only the results for α=1 and α=3. For σ we compared the

results calculated with σ based on 50% of one-week data, data between the first and third quartile (scenario σ b), and for

all the data of the week (scenario σt). We studied four configurations (two values of α with σb or σt) on one-minute data

every week at the four stations. Figure 1 shows an example of spikes detected by SD at FKL on December 16, 2014,

corresponding to a known waste-burning episode reported by the station manager. The station logbook mentions waste

burning occurring nearby the station between 6:30 am and 8:30 am, shown by a purple bar in Figure 1. The blue area in

Figure 1 shows the CO data between first and third quartile leading to a σb = 3.6 nmol.mol-1. Considering all the data,

we obtain a three time higher standard deviation: σt = 12.5 nmol.mol-1. The SD method with α=3 and σb=3.6 nmol.mol-1

selects two 1-min data as spike as illustrated by the orange dots falling within the observed fire episode in Figure 1.

With α=3 and σt=12.5 nmol.mol-1, the method fails to detect any spike, indicating that the threshold value was too high.

With α=1 and σb the SD method selects 44 additional 1-min spikes compared to α=3 (data not reported as contaminated

by the station manager). In both cases (α=1 or α=3) and σ t lead to very high threshold, and an underestimation of the

number of spikes detection, since σt includes the spike variabilities. Based on this sensitivity test against a known local

emission episode, we definitively rejected the use of σt  scenario.

Table 2 represents the percentage of contaminated data detected over one year at  the four sites,  in the four tested

configurations. As can be seen, using all 1-min data to calculate σ t leads to a higher threshold and consequently to less

data detected as contaminated, spikes in other words. On average over the four stations and the three species, switching

from σb to σt decreases the percentage of spikes by a factor 15 ±16 (Table 2). Setting α=3 increases the threshold and

also decreases  the number of  spikes  by on average a factor  of  5 ±7 (Table 2).  The parameter  α is  related to the

variability of the time-series. Since our study aims to provide recommendations for automatic data processing of a

monitoring network like ICOS in Europe, we want to keep the same set of parameters for all the stations of the network

for each species. However, all the tests conducted in the present study have shown that it was not optimal to use the

same parameter for CO time series compared to CO2 and CH4 ones. Setting a lower α for CO lead to the over-estimation

of the number of spikes in the time series. This must result from the different variabilities of those trace gases. For

instance, the ratio between hourly and minute scale variabilities (characterized by standard deviations) for the sites used

in this study, is on average two times smaller for CO compared to CO2 and CH4. As recommended in Brantley et al.

(2014) and Drewnick et al. (2012), we decided to keep α = 3 for CO, and set α = 1 for CH 4 and CO2 because of their

lower variability.

3.1.2 Sensitivity to the parameters of the REBS method

In order to evaluate the sensitivity of spikes to the parameter β , we tested values of β  ranging from 1 to 10. In

this sutdy, we present the REBS method using the default value β =3 as  proposed by (Ruckstuhl et al., 2012) in

Junfraujoch, compared with the optimal value for our purpose β =8. The resulting spike selection at FKL (during a
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local fire episode) is shown in Figure 2. By setting β =3, the REBS method detects the spike during the episode but

it also finds other events which do not appear to be associated with evident contaminations (Figure 2). With β =8,

the REBS correctly detects spikes during the fire episode (orange points in Figure 2). We further compared these two

values of β at the four stations every week, and report spikes detection statistics in Table 3. About 10 times more

spikes for CO, and 5 to 7 times more for CH4 and CO2 were detected by the REBS method with β =3 compared to

β =8. Using β =3, we detected more than 2% of spikes for all species and up to 7% for  CO2 at AMS. Using

β =8  these  percentages  are  reduced  to  0.1% and  1%,  respectively  (Table  4),  in  better  agreement  with  spikes

manually reported by site managers.

Based on these sensitivity tests for the SD and REBS parameters, and the a prior estimation of the percentages of spikes

manually detected by site managers, we apply the SD method with σb and α=3 for CO, and with σb and α=1 for CO2 and

CH4. For the REBS method we use β =8.

3.2 Statistics of the three spike detection methods

The statistics for local spikes detection with the three methods are given in Table 4. With COV we detect an average of

about 2% of spikes with the 99th percentile threshold for all stations and species (section 2.2). With the methods SD and

REBS more variable percentages of spikes are found depending on the trace gas  variabilities at  each station. The

percentages of contaminated data range from 0.1% for CO2 at AMS, to 7% for CH4 at PDM. The value of 7% detected

for CH4 at PDM is higher than at all other sites / species, and reveals the influence of a source of methane on the site

(see below and next paragraph). For OPE, we found a significant percentage of spikes (between 1 and 2%) for all

species, which may be explained by the higher number of local emission sources compared to other stations located in

more pristine environments. At FKL and AMS we obtain different percentages of spikes between SD and REBS for

CO2. In fact, we assume that this difference can be related to the sea land circulation, when winds turn, leading to a fast

change in atmospheric concentrations. For FKL, AMS, and PDM, the percentage of spikes found with the SD and

REBS methods vary around 1% with the exception of CH4 at PDM where both SD and REBS detect high percentages

of spikes (7% for SD method and 2.3% for REBS method). This is not expected for a high mountain station. The results

of the field campaign organized at PDM in 2015 (section 3.3) revealed the influence of a local water treatment facility

in a building of the station, producing CH4 (see section 3.3).

Generally,  the  methods  SD  and  REBS  detect  automatically  spikes.  However,  the  COV method  requires  a  prior

knowledge of data sets and the approximate number of data to be filtered. Because of this limitation for automatic spike

detection we have discarded the COV method from further tests for the selection of the most reliable method for spike

detection.

3.3 Comparison of SD and REBS methods to detect CH4 spikes at the PDM clean-air mountain station

In this section we use field campaign data involving two instruments at PDM to study the efficiency of the SD and

REBS methods. As noted above, the PDM CH4 record shows many spikes (duration of a few minutes) superimposed on

low frequency variations in the background signal (time scales from hours to days). Such spikes were not observed in

the CO2 monitoring with the same analyzer. The SD method detects 20 times more spikes for CH4 than for CO2 at PDM
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ICOS site (Table 5). Looking for all possible local methane emissions at the site, we identified a small sewage treatment

facility  located  about  20  m  below  the  air  intake  of  the  analyzer  (called  AN-1)  to  be  responsible  for  local  CH4

production. A test campaign was then organized between July and August 2015 with a second analyzer (called AN-2)

installed in another building at the opposite side of the station platform, 200 m away from the location of AN-1 (a

picture of the location of the two buildings is presented in the Supplement Figure S3) . The two analyzers were installed

to measure simultaneously CH4 and CO2 molar fractions from first of July to 31 th of August. The CH4 and CO2 time

series from analyzers AN-1 and AN-2 running in parallel are presented in Figures 3 and 4.

We applied the SD and REBS methods to the CH4 and CO2 time-series from both analyzers. For CH4, analyzer AN-2

located away from the sewage shows much less spikes than AN-1. For instance, between early July and late August

2015, there is more than 12% of contaminated data with the SD method, and 3% with the REBS method in the AN-1

record, against only 0.8% with SD and 0.7% with REBS with the AN-2 instrument (table 5). Considering that the two

analyzers are measuring ambient air sampled 200 m apart, this large difference is clearly due to the local emission from

the sewage facility. Interestingly, for CO2 we detect more spikes in AN-2 than in AN-1 (Figure 4). More than 1% of CO2

spikes  were found in the AN-2 record compared to 0.5% for  AN-1 (Table 5,  Figure 4).  This  is  explained by the

proximity of a diesel generator to AN-2, although this generator is used only a few hours every month (especially in

case of electrical storm). Both SD and REBS detect the same CO2 spikes in both AN-1 and AN-2 time-series (Figure 4).

Running two analyzers in parallel allowed us to understand the unexpected high spikes percentage of the CH4 time-

series at Pic Du Midi. Both SD and REBS confirm the frequent contamination of the CH 4 time series of AN-1 since

2014, and show a good ability to detect the spikes, yet with significant differences regarding the percentage of data

detected as contaminated. Considering that AN-2 analyzer provides less contaminated CH4 time series, we have used

this experiment to compare between the two methods and select which one performs better for CH4 spikes at PDM.

Figure 5 and 6 represent the CH4 and CO2 measurements of AN-1 and AN-2. Black data points are the sampled data;

and the green ones are the filtered data using the SD (A) and REBS (A') methods. For AN-2, CH4 concentrations (black

data point in Figure 5) rarely exceed 1950 nmol.mol-1, whereas for AN-1, it exceeds 2000 nmol.mol-1 (black data point),

and occasionally reached almost 2200 nmol.mol-1 (unexpected high value for a clean-air mountain station). SD and

REBS  methods  both  detect  all  contaminated  data  that  range  between  1980  and  2200  nmol.mol-1  for  AN-1.  The

differences between the two automatic methods are more important for data that are below 1980 nmol.mol -1. In fact, the

filtered data (green data point) using the SD method fits better the 1:1 correlation line with the less contaminated

analyzer than the REBS method (Figure 5).  The REBS method underestimates the lower part  (foot)  of the spikes

(contaminated data that range between 1900 and 1980 nmol.mol-1, Figure 3-A' AN-1). On the other hand, for CO2 the

two methods detect nearly the same spikes, as shown in Figure 4, and provide similar filtered time series (green data

point in Figure 6). How can we explain the insufficient performance of the REBS method to detect the lower part of the

CH4 spikes? This method defines spikes using the estimated baseline (Ruckstuhl et al. 2012). When the population of

contaminated data is high, the baseline is flawed due to the influence of spikes, and the baseline determination will be

overestimated. In Figure 5, we can clearly notice the missed detection of many contaminated data by REBS method,

due to the high values of the baseline. The SD method, despite its simplicity thus appears to detect correctly most of the

local  spikes  at  PDM, even if  a  slight  underestimation of  contaminated  CH4 data remains even  after  data  filtering

(deviation from the  1:1  line).  This  underestimation  is  related  to  the  spikes  residues  (spikes  foot  that  persist  after

filtering).
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3.4 Comparison between automatic and manual spike detection

In this section we analyze how the SD and REBS methods detect spikes of CO 2, CH4 and CO, that were independently

identified by the station staff and related to a known local source of contamination at FKL and PDM.

At FKL the contamination events reported by the site manager are associated with local fires nearby the station. The

technical staff recorded dates of burning (plant residues from nearby grazing land) which could lead to significant

emissions of trace gases, especially CO and CO2. It should be noted, however, that this information is not exhaustive in

a sense that the person in charge does not necessarily have information on all burning events. We have matched the

trace gas time series with the logbook information showing 17 days with local burning events between 2014 and 2015.

We applied the SD and the REBS methods over one-week time windows containing each burning event. First, we run

the algorithms separately on the three species (CH4, CO2, and CO). Then, if the algorithm detects a spike in at least one

species, we consider as spikes data for all other species as well. In the case of spike detection related to waste burning

events we can use the CO measurements as a reference. Several studies demonstrate that fires plumes lead to strong

enhancements of CO concentrations in the atmosphere (Forster et al., 2001). As an example, the CO spikes during local

fire episodes can exceed 100 nmol.mol-1 in less than one minute at  FKL. In the Supplement,  Figure S4 shows an

example of the SD method applied on a fire episode between 03:00 pm and 04:00 on November 6 th, 2014. The spike

occurred simultaneously for the three species CO, CO2 and CH4, with a similar pattern. The same spike was identified

by the station manager, demonstrating the ability of an automatic method to detect a real local contamination event.

The SD method and REBS method were able to detect the 17 events associated with local fires. Figure 7-A represents

the number of contaminated data (minute averages) detected by the automatic methods (SD and REBS) and manual

flagging by the station staff. The numbers of selected data are split into three concentration ranges. The two automatic

methods  and  the  manual  flagging  detect  the  same number  of  contaminated  data  for  CO classes  higher  than  400

nmol.mol-1. We have an excellent agreement for the spikes with the highest concentrations. For the low concentration

spikes (< 400 nmol.mol-1), the automatic methods are less selective than the manual flagging. In Figure 8 we show

another example of contaminated data detected by manual flagging at FKL, compared to spikes retrieved by the SD and

REBS methods. When the difference between uncontaminated (identified as reference) and spike data is not significant

compared to a certain standard deviation threshold, the methods may thus fail. The data highlighted by the blue circle in

Figure 8 give an example of spikes for automatic methods diverge from the manual information. These data are either

close to the baseline REBS selection (Figure 8 C), or close to the Cunf value for the SD method (Figure 8 B). Those are

the cases where the automatic methods may underestimate the contaminated data, especially spike foot. At this point it

is important to note that the person in charge of data flagging selects spikes using a known period (from a starting to an

ending time).

A second comparison study between automatic methods and manual detection has been performed at PDM using CO

time series from December to February 2014. During winter, the station experienced several snowfall episodes and

snow was removed with a diesel powered snow blower. This operation influenced the GHG concentrations and leads to

sharp spikes easily observed in the CO time series (Supplement Figure S5). The site managers eliminated manually all

these data. For comparison, (as illustrated in the Supplement Figure S5) we display the spikes detected f rom December

to February 2014 by the SD and the REBS methods.  Most of the spikes are successfully detected by the SD and the

REBS methods. Figure 7-B represents the number of contaminated data detected by SD in red and REBS in green, and

manual flagging in blue. Similar to the FKL local fires, the SD and the REBS methods detected the same number of

spikes than the manual selection for high concentrations. 857 contaminated data are detected by the SD method (same
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as the PI) for concentration higher than 400 nmol.mol-1, and 828 data are detected by the REBS method. The main

difference between the automatic methods and the manual flagging are related to the lower part of the spikes. For 2861

data (CO < 400 nmol.mol-1) flagged manually by the PI station, the SD method detects 2270 data, when the REBS

method detects only 1799 data. In fact, for moderate spikes the SD method selects 70% of contaminated data according

to the PI, when the REBS method retrieves only 60%.

3.5 Influence of the spike detection on hourly averages:

In  this  section we estimate the  impact  of  the  spike detection on data used  for  atmospheric inversions,  which  are

typically  hourly  or  half-hourly  averages.  For  this  purpose  we have  calculated  the  differences  between the  hourly

averages of the filtered and non-filtered time-series. In table 6, we present the number of hours in which we filtered at

least one-minute data, and for each species, we classified the results into three intervals. For CO2, the first interval

represent the values lower than 0.5 µmol.mol-1, the second interval is for differences between 0.5 and 1 µmol.mol-1, and

the third one stands for the higher differences (values more than 1 µmol.mol -1). For CH4 and CO we set the first interval

is for values lower than 5 nmol.mol-1, the second interval represents the data between 5 and 10 nmol.mol -1, and the third

one is for differences higher than 10 nmol.mol-1. Most of the differences between filtered and non-filtered hourly data

vary between 0 and 0.5 µmol.mol-1 for CO2, and between 0 and 5 nmol.mol-1 for CH4 and CO. For CO2 in AMS

station, the SD method detects 1454 one minute data (table 4), which occur in 104 hours during the three years of

measurements. 62% of those hours are characterized by a difference up to 0.5 µmol.mol -1, and 18% show more than 1

µmol.mol-1 of difference. For CH4 measurements in AMS, the 8801 contaminated data detected by the SD method

(table 4) occur in only 21 hours, and this modifies the hourly averages by 5 nmol.mol -1 as a maximum. For the four

sites, we notice similar effect on the hourly averages. Most of the impacted hours are characterized by a difference

within the first interval (0.5 µmol.mol-1 for CO2; 5 nmol.mol-1 for CH4 and CO). However, for  OPE we observe higher

differences with 53%, 36% and 47% of the impacted hours in the highest interval respectively for CO2, CH4 and CO.

This feature is probably related to the higher number of the nearby local emission sources nearby OPE site compared to

the other stations located in more pristine environments. The Figure S6 shows a decrease of the number of impacted

hours  for  higher  intervals  (the  same  pattern  as  the  three  other  stations).Overall,  the  aggregation  of  the  filtered

measurement at the hourly time scale showed a relatively weak impact of the filtered data for background sites, but a

more significant effect for stations located closer to local sources.
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4. Conclusion

The development of regional networks for monitoring greenhouse gases (GHG) and related tracer concentrations leads

to an increasing number of continuous measurement stations, especially in continental areas. For example, the European

ICOS research infrastructure is developing a network of tall towers for very precise GHG measurements across the Eu -

ropean continent. It is thus important to characterize the representativeness of each individual measurement, in order to

separate spikes from local emissions that should not be used in studies aiming at constraining regional fluxes.

We addressed the problem of identifying concentration spikes of few minutes duration in GHG continuous series by ap-

plying automatic detection methods (COV, SD and REBS) previously used for atmospheric pollution but not systemati-

cally for GHG time series. Stations with different regimes of variability where local emission sources are identified

without ambiguity (engines / waste near the station buildings, or fires nearby) are chosen to evaluate the performance of

the automatic methods against spikes manually identified by station managers. The COV algorithm can be considered

as a semi-automatic method since it requires an a-priori choice of a percentage of data rejected as spikes. We tested the

COV method with a percentage of 1% of spike data for all species and for all stations. This limitation made the COV

method less flexible and informative for universal automatic spike detection across different sites. For the two fully-au-

tomatic methods (SD and REBS) we performed several sensitivity tests in order to recommend the best set of parame-

ters for our 4 chosen stations considered to be representative of most ICOS stations (disregarding those located in sub-

urban environments).

The application of the automatic methods on contaminated time-series at the Pic Du Midi observatory showed the abil -

ity of SD and REBS to detect real spikes on the CH4 time series caused by the sewage treatment of the observatory.

Nevertheless, significant differences regarding the rejection percentage were noticed between the methods. Both meth-

ods have a tendency to unduly keep a certain fraction of the spike base (lowest concentrations in spikes). REBS is worse

than SD in this respect. In the REBS method, when the percentage of spikes is high, the baseline determination is biased

toward high concentrations, leading to underestimate spike anomalies above this baseline. However, the SD method

correctly detects most of the contaminated data.  The comparison between SD and REBS and the manual flagging

showed a good agreement with an overall percentage of 70% of successful spike data detection for SD, and 60% for

REBS, at two stations (FKL and PDM) where local contaminations are well identified by the local staff. These two au-

tomatic algorithms detect short-term spikes, allowing for a more consistent and automatic filtering of the time series

even if they select less spikes data the manual flagging. The estimation of the impact of the spike detection on data used

for atmospheric inversions showed a relatively weak impact of the filtered data for background sites, and a more signifi -

cant effect for stations located closer to local sources. The SD method is found to be efficient and reliable for the pur-

pose of spike detection. It has been proposed for operational implementation in the ICOS Atmospheric Thematic Center

Quality Control (ATC-QC) software to perform daily spike detection of the near-real time dataset of continuous ICOS

stations. The first step will be to run the SD method in a test mode over all ICOS stations and compare with manual de -

tection when available, in order to set optimal values of parameters. This analysis can be complemented with wind

speed and direction data in order to possibly attribute spikes to fixed local sources.
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Site Measured
spices

Instrument Longitude Latitude Ground
level

(m asl)

Sampling
hight

(m agl)

Starting
date

End
date

Pic du Midi (PDM) CO, CO2,
and CH4

Picarro /
G2401

0°08'E 42°56’N 2877 10 2014-05-
07

2015-
12-31

Observatoire
Pérenne de

l’Environnement
(OPE)

CO, CO2,
and CH4

5°5'E 48°55’N 395 10, 50 and
120

2013-03-
07

Finokalia (FKL) CO, CO2,
and CH4

35°20’ E 25°40’ N 230 15 2014-06-
05

Amsterdam (AMS) CO2, and
CH4

Picarro /
G2301

37°48’ E 77°32’ S 55 20 2013-01-
01

Table 1: Measurement sites characteristics
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Site Spices
Contaminated data percentages (%)

σb scenario σt scenario

α =1 α =3 α =1 α =3

AMS CH4 0.03 0.01 0.006 0.003

CO2 0.07 0.03 0.01 0.006

FKL
CH4 0.2 0.02 0.02 0.002

CO2 0.1 0.04 0.01 0.002

CO 3 0.4 0.3 0.07

OPE
CH4 0.7 0.3 0.06 0.01

CO2 0.8 0.04 0.02 0.01

CO 0.9 0.4 0.1 0.02

PDM
CH4 6 2 1 0.1

CO2 0.2 0.05 0.02 0.005

CO 3 0.1 0.04 0.004

Table 2: Sensitivity of SD method spike detection for two sets of α (α=1 and α=3), and for two range of background data 

interval (σb and σt scenario) for the four stations and all species.
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Sites Species
Contaminated data percentages (%)

β =3 β =8

AMS CH4 2 0.3

CO2 7 1

FKL CH4 5 0.8

CO2 4 0.6

CO 1 0.1

OPE CH4 2 0.4

CO2 2 0.4

CO 1 0.1

PDM CH4 8 2

CO2 5 0.7

CO 2 0.2

Table 3: Sensitivity of REBS spike detection method for two sets of β ( β =3 and β =8) for the four stations and all 

species.
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Sites species

SD REBS COV

Percentage

(%)

Number of

detected

data

Percentage

(%)

Number of

detected

data

Percentage

(%)

Number of

detected

data

AMS CH4 0.6 8801 0.2 3318 2.1 29315

CO2 0.1 1454 1.7 24210 1.8 24672

FKL CH4 0.3 2096 1 7680 2 14657

CO2 0.1 1052 0.6 4831 1.9 14295

CO 0.2 1618 0.1 1002 2.1 15617

OPE CH4 1.8 5473 1 2987 1.3 3864

CO2 1.1 3296 1 2749 1.5 4186

CO 1.3 3777 1.1 3120 1.4 4118

PDM CH4 7 56548 2.3 19056 1.8 14243

CO2 0.3 2567 1 8757 1.9 15618

CO 0.2 1970 0.2 1348 2 16603

Table 4: percentage (rounded to one decimal) and number of contaminated data detected by SD, REBS, and COV method 

overall stations (AMS, FKL, OPE and PDM) and for the three species CO, CO2 and CH4.
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ICOS site TDF site

SD REBS SD REBS

CH4 Percentage (%) 13 3 0.8 0.7

Number of

contaminated data

10244 2396 684 602

CO2 Percentage (%) 0.2 0.5 1.1 1.4

Number of

contaminated data

158 390 849 1050

Table 5: percentages and number of contaminated data detected by SD, REBS methods for CO2 and CH4 at PDM.
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CO2 (µmol.mol-1) CH4 (nmol.mol-1) CO (nmol.mol-1)

]0-0.5[ [0.5-1[ >=1 ]0-5[ [5-10[ >=10 ]0-5[ [5-10[ >=10

AMS 64 (62 %) 21 (20%) 19 (18%) 21 (100%) 0 0

FKL 133 (89%) 12 (8%) 5 (3%) 134 (88%) 11 (7%) 7 (5%) 218 (93%) 8 (3.5%) 8 (3.5%)

PDM 522 (92%) 30 (5%) 16 (3%) 4696
(78%)

741 (12%) 623 (10%) 518 (99%) 4 (0.8%) 1 (0.1%)

OPE 36 (28%) 24 (19%) 69 (53%) 53 (54%) 10 (10%) 36 (36%) 107 (45%) 20 (8%) 111 (47%)

Table 6: Classification of the number of hours in which the SD method filtered at least one-minute data point for CO, CO2,
and CH4 at the four sites. The intervals represent the differences between filtered and the non-filtered time-series averaged at

a hourly scale in (µmol.mol-1) for CO2 and (nmol.mol-1) for CO, and CH4.
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Figure 1: comparison between two sets of α parameter for SD method. Red color represents detected spikes for α=1, orange 
data are the detected spikes for α=3. The blue area shows the data between the first and the third quartile (q1=0.25, and 
q2=0.75).
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Figure 2: comparison between two sets of ß parameter for REBS method. Red represents detected data for β =3, orange 

are the detected data for β =8, applied on FKL measurement 6th of November 2014.
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Figure 3: AN-1 CH4 measurement at T55 building for A and A’, and AN-2 TDF building for B and B’. Black data points are 
the retained measurements, red points represent the flagged using SD method for A and B, and REBS method for A’ and B’
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Figure 4: AN-1 CO2 measurement at T55 building for A and A’, and AN-2 TDF building for B and B’. Black data points are 
the retained measurements, red points represent the flagged using SD method for A and B, and REBS method for A’ and B’
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Figure 5: plots of CH4 measurements of AN-1 against AN-2. All data are in black, and the green points represent the retained

data using SD method for A and REBS method for A’

Figure 6: plots of CO2 measurements of AN-1 against AN-2. All data are in black, and the green points represent the retained 

data using SD method for A and REBS method for A’
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Figure 7: Number of flagged CO measurements using manual method (blue), SD method (red), and REBS method (green) for

Finokalia (A) and Pic Du Midi (B) . 
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Figure 8: Example of a spike detection using manual (A), SD (B), and REBS (C) methods during a known biomass burning 

event at Finokalia.
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